Roll No.

ASME-24BC-CHEM-I CHEMISTRY (PAPER-I)

Time Allowed : 3 Hours

[Maximum Marks: 100

QUESTION PAPER SPECIFIC INSTRUCTIONS

Please read each of the following instructions carefully before attempting questions.

- 1. Question paper contains **<u>EIGHT</u>** questions printed in English.
- 2. Attempt <u>any FIVE</u> questions in all.
- 3. Question <u>No.1</u> is compulsory. <u>FOUR</u> questions are to be attempted out of the remaining <u>SEVEN</u> questions.
- 4. All questions carry equal marks. The number of marks carried by a question/ part are indicated against it.
- 5. Unless otherwise mentioned, symbols and notations carry their usual standard meanings.
- 6. Write answer in legible handwriting.
- 7. Each part of the question must be answered in sequence and in the same continuation. Attempts of questions shall be counted in sequential order. Unless struck off, attempt of a question shall be counted even if attempted partially. Any page or portion of the page left blank in answer book must be clearly struck off.
- 8. Re-evaluation / Re-checking of answer book of the candidate is not allowed.

- (a) Discuss the bonding between two Re atoms in octachlorodirhenate ion 5 supported by bond energy consideration.
 - (b) The overall quantum yield for the photochemical decomposition of Cinnamic 5 acid is 0.8 at 300 nm irradiation. How long time will it take (in minutes) to photo-decompose 1 mole of the compound under total absorption condition using a 100 W light source?
 - (c) Consider the reaction between 2-methylpropene and HBr. Draw the complete 5 mechanism for this reaction, indicating all intermediates and transition states.
 Explain why the reaction follow Markonikov's rule.
 - (d) Draw a packing diagram of the perovskite A-type cell (CaTiO₃/ABO₃), 5
 determine the number of ABO₃ formula units, and describe the coordination geometry around each type of atom.
- 2. (a) Predict the geometry of the following lanthanide complexes: 7
 - (i) $[Er(NCS)_6]^{3-}$, (ii) $[Nd(H_2O)_9]^{3+}$, (iii) $[Ce(NO_3)_4(Ph_3PO)_2]$
 - (b) Define Joule-Thomson coefficient and show that it has a positive value for a 7 real gas.
 - (c) How and why does the cohesive force in metals vary in a group and period in
 6 the periodic table? What physical properties are influenced by these changes in cohesive force?
- 3. (a) During nuclear explosion, one of the products is Sr-90 with half-life of 28 7 years. If 2 µg of Sr-90 was absorbed in the bones of a newly born baby instead of calcium, how much of Sr-90 will remain after 15 years and 75 years if it is not lost metabolically.
 - (b) Define Inversion temperature and critical temperature. Show that for a van der 7
 Waals gas, the inversion temperature is given by T_i=2a/Rb.

- (c) The complexes [Mn(H₂O)₆]²⁺, [MnCl₄]²⁻, [Fe(H₂O)₆]³⁺, and [FeCl₄]⁻ have 6 nearly similar magnetic moments. What does this indicate about the geometry and electronic structures of these complexes? Why is the spin-only formula so precise in these complexes?
- 4. (a) The wave function of a particle in a 1-D box with infinite wells is Ψ=0.1φ₁ + 7
 0.2φ₂ + 0.3φ₃, where φ₁, φ₂, and φ₃ are the ground state and the first two excited states, respectively. What is the probability to observe the particle in the ground state?
 - (b) Compare the affinity of oxygen with haemoglobin and myoglobin by drawing 7 oxygen binding curve for the both. Explain why haemoglobin has a lower affinity for oxygen than myoglobin.
 - (c) Write the relationships and differentiate between Freundlich and Langmuir6 adsorption isotherms.
- 5. (a) When [Pt(NH₃)₄]²⁺ is allowed to stand in 0.1M HCl for many days at 30°C, no reaction is observed. Only under forcing conditions is the cation converted to trans-[Pt(NH₃)₂Cl₂]. However, when [PtCl₄]²⁻ is treated with NH₃ it gives cis-[Pt(NH₃)₂Cl₂] rapidly. Account for the difference in the rates of these two reactions.
 - (b) Give appropriate reactions when i) NaNO₂, ii) Al(CH₃)₃, iii) NH₂C(O)NH₂ is 7 dissolved in ammonia. Will the solution be acidic or basic concerning the pure solvent and the solute act as a weak or a strong acid or base?
 - (c) The hydrolysis of an ester follows first-order kinetics in presence of an acid, and second-order kinetics in the presence of dilute alkali. Explain in detail.
- 6. (a) Account for the following: 7
 - (i) H_2O has an abnormally high boiling point compared to H_2S .
 - (ii) PCl₅ exist but NCl₅ does not.

6

(b) State and explain the term quantum yield. Account for the kinetics of the 7 following photochemical reaction:

$$H_2(g) + Cl_2(g) \xrightarrow{h\nu} 2HCl(g)$$

- (c) Calculate the magnetic moments of Dy³⁺ and Yb³⁺. (Atomic No. of Dy 66 and 6 Yb is 70)
- 7. (a) Compare the electronic spectra of lanthanide and transition metal ions. Discuss
 7 how the filling of the 4f orbitals in lanthanides affects the periodic properties.
 - (b) Blue CuSO₄·5H₂O crystal releases its water of hydration when heated. How 7 many phases and components are present in an otherwise empty heated container?
 - (c) Explain why there is depression in the freezing point when a non-volatile
 6 solute is dissolved in a solvent? Derive the relationship between depression in
 the freezing point and the molecular mass of the solute.
- 8. (a) Discuss thermodynamic and kinetic stability of complexes by citing suitable
 7 example of each type. What is the trend in the variation of thermodynamic stability constant? Explain giving examples.
 - (b) How can you determine magnetic susceptibility of a given compound 7 following the Gouy's Method? Discuss with mathematical relationship.
 - (c) A galvanic cell operates on the following redox reaction:

 $2MnO_{4}(aq) + 10Br(aq) + 16H(aq) \rightarrow 2Mn^{2}(aq) + 5Br_{2}(l) + 8H_{2}O(l)$

Calculate the cell potential at 25°C. Given that the concentrations of the aqueous components are: $[MnO_4^-]= 0.025 \text{ M}$, $[Br^-] = 0.050 \text{ M}$, $[Mn^{2+}] = 0.40 \text{ M}$, and $[H^+] = 0.65 \text{ M}$.

6